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For circumstances under which it is practical to provide good resolution of a viscous 
boundary layer everywhere, a simple method for including no-slip, irregular boundaries 
into a Cartesian numerical model is presented. The method is a simplification of existing 
methods for dealing with irregular boundaries and is shown to the effective when the re- 
solution requirements are satisfied. 

1. INTRODUCTION 

Recent interest in geophysical flows over topography has helped to stimulate 
research into numerical models of fluid flow over an irregular boundary. The impor- 
tance of the general problem is obvious, since the geometry of the boundaries is one 
of the major determining factors in the flow field. In the atmospheric context, one 
feature worth noting is that the height of most topography is not very much larger 
than the boundary layer depth. So for atmospheric flows, the boundary layer will 
often play a crucial role in the dynamics. 

The numerical problems involved in modeling irregular boundaries are serious, 
and a number of methods have been used to deal with them. The most obvious 
difficulty is that the boundaries do not generally coincide with coordinate surfaces in 
any convenient coordinate system. One method of removing this problem is to 
transform to a new coordinate system which does contain the boundary as a coordinate 
surface. Gal-Chen and Somerville [ 1, 21 and Thompson et al. [3] describe the transfor- 
mation of the Navier-Stokes equations into a general nonorthogonal coordinate 
and a numerical method of solving the equations. Other methods which allow an 
arbitrary disposition of grid points, e.g., the ICED-ALE method described by Hirt 
et al. [4] and Pracht [5], or finite-element techniques, can accommodate an irregular 
boundary without difficulty. In all these methods the equations become very compli- 
cated, especially in three dimensions, and the elliptic equation determining the pressure 
for an incompressible fluid is difficult to solve. As a result these models have slow 
execution speeds, which strictly limits the useful calculations that can be made. 

To circumvent the problem of execution speed, some workers have attempted to 
include irregular boundaries in a Cartesian framework either by ensuring that the 
boundary passes through grid points or by using Taylor series to extrapolate to the 
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boundary. The first method is very crude and allows only steplike boundaries, or 
straight ramps, while the second approach can lead to instability and loss of accuracy 
near the boundary; see [6]. For an incompressible fluid, both methods require the 
solution of an elliptic equation for the pressure in an irregular domain. This usually 
necessitates the use of a point-relaxation iterative scheme, which is comparatively 
slow. 

In this paper we describe a simple method of including topography in a Cartesian 
model of boundary layer flows, without changing the basic code. The method is 
developed by considering the topography as a region of arbitrarily high viscosity and 
density. The artifice of high viscosity and density is adopted to facilitate a simple 
analysis of how the equations can be solved in the entire rectangular domain. The 
method is an approximation to the Taylor series methods mentioned above [4-61. 
Viscous stresses only are made continuous across the boundary between the fluid 
and the topography. In order for these to be the most important forces at the surface, 
a viscous boundary layer ‘must be adequately resolved. The other terms in the equations 
are effectively evaluated with the steplike topography mentioned above. This limits 
the scales of topography which can be accurately dealt with to features not much 
larger than the boundary layer. For topography very much deeper than the boundary 
layer, methods such as the nonorthogonal coordinate system, ICED-ALE, or finite- 
element methods are necessary, especially since many of their complications are 
removed if the flow is effectively inviscid. Within the above limitation on the height 
of the irregularities, the method to be described gives a very efficient model of 
boundary layer flow over topography. 

Details of the method are presented in the next section, and some results of 
integrations with various scales of topography in a rotating fluid follow. Although the 
model described here is two dimensional, the method is just as easily incorporated 
into an existing three-dimensional model. 

2. NUMERICAL METHOD AND MODEL 

a. Basis of the Method 

The basic system, illustrated in Fig. 1, is a no-slip, horizontal lower boundary, 
with a high-viscosity fluid occupying the region below some specified surface S, and 
a low-viscosity fluid above. The viscosity is a fixed function of space and is not 
transported by the fluid. Obviously, in the limit as the viscosity below the surface, 
vs -+ co, with the fluid viscosity v0 fixed, the flow beneath the surface will vanish, 
and the no-slip condition at the surface of the topography will be satisfied. 

If the viscosities in a finite-difference model were set to either v0 or v, depending 
on whether the grid point were above or below S, the result would be a steplike 
approximation to the surface. To improve on this, we must determine which terms 
are important at the surface. Since we wish to achieve a no-slip condition on S, 
viscous stresses must dominate; therefore we enforce continuity of the viscous stresses 
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p~(&/ax~ + &.+/a~~) across S. Note that the numerical model must resolve the 
boundary layer on S sufficiently accurately for the viscous terms to be dominant on 
the lowest grid points above S. 

=L;” I,,,,,,,,,,, a; ,,,,,,,, /, 1” 

z=H 

I=0 

FIG. 1. Schematic diagram of domain of integration. 

FIG. 2. Illustrating the intersection of the surface S and a vertical line of grid points. 

We assume that the density p is constant in what follows and make v au,/ax, 
continuous across S by defining an interpolated viscosity on grid points where a 
velocity gradient is calculated with velocities from both sides of the surface. The 
situation for the vertical gradient of the horizontal component of velocity, U, is shown 
in Fig. 2. The grid points at which u is stored are denoted by crosses, and viscosities 
are required at intermediate points. d is the grid length, which spans S, and 7) is the 
height of the surface above the lower grid point, P. Suppose Uo is the stored com- 
ponent at the upper grid point Q, and similarly UP. Then we can determine the 
velocity at the point R on the surface, U R , by equating the stresses above and below 
S. Thus 

%(Uo - UIJ 
A-77 

= @JR - UP) 
71 . 

(2.1) 
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Solving for U, gives the contribution to the stress as p~,,v~(Uc- U,>/[V,,~ + v~(LI -$J, 
The model calculates the contribution as pv,& U, - Up)/d ; thus 

‘INT - v,,~ + vs(A - $ * (2.2) 

This procedure is equally applicable to horizontal derivatives and results in a field 
of viscosity values which preserves viscous stresses across the surface. 

Now it can be seen that the limit as vs + co can be defined by means of relation 
(2.2). This gives interpolated values of viscosity as 

?NT = VW - 7). (2.3) 

Furthermore, since the solution for the flow beneath S is known in the limit vs + co, 
i.e., u = ZI = w  = 0, it is not necessary to use a numerical scheme capable of dealing 
with very large viscosities, and the velocities below S can be held fixed at these values 
for all time. 

Provided a thermal boundary layer is also resolved, we can make conductive heat 
fluxes across the surface continuous in a precisely analogous manner. The conductivity 
of the hill may be taken as infinite if the hill is intended to be isothermal, and in this 
case the temperature is set equal to the chosen value at points beneath S. Arbitrary 
temperature profiles can be specified, but different temperatures need to be set depen- 
ding on whether the grid-point value is being used to calculate a vertical or a horizontal 
gradient. 

To show that Eq. (2.3) is exactly the result which would be obtained by making a 
first-order estimate of the first derivative at the point T, we write a Taylor expansion 
around T as 

If U, is eliminated from the above equations, a little algebra gives 

In the method described here the stress at T, v, au/az IT is given by VINT(UQ - U,)/A. 
Thus when VrNT is given by Eq. (2.3) and Up = 0 this estimate is exactly the Taylor 
series estimate. 

This, then, is the essence of the method. Before describing the details of its incor- 
poration into a particular finite-difference model, we discuss the magnitude of the 
truncation errors incurred near the surface. 

The first factor to be considered is the length scale for the variation of the stress 
near the surface, h say. Since the approximation of the surface stress is first-order 
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accurate, the error will be O(d/h). A is determined by the dynamics of the flow. 
For example, on long length scales for which the Rossby number R = U&L < 1 
(U, is the free stream velocity, f the Coriolis parameter, and L the horizontal length 
scale) the stress is determined by a local-equilibrium Ekman layer and X = 6 = 
(2~~/f)l/~, the boundary layer depth. In general, h can be obtained by considering a 
balance of terms in the momentum equation. On shorter length scales the viscous 
terms are balanced by the inertial and pressure forces, i.e., pressure and nonlinear 
terms, ~UozX2/62L; viscous terms, ~u~U,,/h& Hence h = (v,,LS/U,$~3 (cf. triple-deck 
theory, Stewartson [7]). 

Second, we must consider the relative magnitudes of the errors in the other terms 
in the equations. We consider the horizontal momentum equation here, since errors 
in the vertical equation will be of the same order if the slope is O(1). In the case of 
very gentle topography, vertical accelerations are negligible, and the dominant error 
in the vertical velocity arises through the continuity equation. The magnitude of the 
horizontal velocity component at a height z < 6 above the surface will be u N Ugz/S; 
thus the nonlinear term has magnitude U,,2z2/62L, cf. the viscous term v,,U,,/h& The 
error in the nonlinear term is zeroth order, since the gradient is calculated without 
regard for the position of the surface. Thus the relative error when z = d is O(f12/A2) 
(using the definition of A) and consequently is smaller than the error in the viscous 
term. 

The Coriolis term has magnitudefU#, and owing to a staggered grid, this term 
involves horizontal averaging without regard for the position of the surface. Hence 
the errors are zeroth order again, but relative to the viscous term the error is 
O((~I/)l)(h/6)~). Thus for a small Rossby number when the Coriolis forces are important 
the relative error is 0(4/6), the same as that in the viscous term itself. 

The errors in the density equation are similar to those in the momentum equation; 
therefore the error resulting in the buoyancy term is O(d/hr), where A, is the vertical 
scale of variation of the heat flux. A, is smaller than X only when the Prandtl number 
of the fluid is large. 

Thus the application of this method introduces first-order errors in the small 
velocities near the surface. The magnitude of these errors is the same (for the same A) 
as that of the errors introduced by the usual reflective boundary condition used to 
represent a no-slip flat boundary with a staggered mesh. 

Finally, although our method has no integral mass flux errors, there are local errors 
in mass fluxes near the surface. Consider the horizontal flux across the interval PQ of 
Fig. 2. The horizontal velocity at Q will be ol(d - q), where 01 is the velocity gradient 
at the surface. Thus the flux is (a/2)@ - $2 + third-order terms. Since our method 
approximates the viscous terms to first order, the velocity at Q will be correct to second 
order in (A - 7). Thus the implied flux across PQ is (a/2) d(d - q), which gives a 
maximum error of @12. These errors are worse than the O(d3) errors in flux estimates 
away from the boundary and imply a first-order transport across the surface. However, 
in practice the factor of & (a factor of $ is essentially due to the accuracy of the viscous 
terms) means that unless the interior resolution is very fine these errors are not 
significantly larger than the second-order interior errors. 
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b. Numerical Model 

The method outlined above has been incorporated into a two-dimensional Cartesian 
model of an incompressible, Boussinesq fluid. The equations of motion to be solved 
are 

where the coordinate axes and velocity components are as shown in Fig. 1. f is the 
Coriolis parameter, g the acceleration due to gravity, p the mean density, p the 
perturbation density, v the kinematic vixcosity, and k the thermal diffusivity. The 
only term involving a derivative with respect to y is dP,ldy, which is a constant and 
generates the basic geostrophic flow through the domain of integration. 

Variables are stored on the standard staggered grid (e.g., Williams [S]) sketched 
in Fig. 3. The grid is uniform in the x-direction, and is stretched in the z-direction to 
resolve the boundary layer. Leapfrog time differencing is used, and all spatial 
derivatives are centered, so the finite differencing is second-order accurate in space 
and time. Owing to the well-known unconditional instability of the viscous terms 
with an explicit leapfrog formulation, a du Fort-Frankel scheme is used for the 
viscous terms; i.e., the value at the grid point under consideration is replaced by the 
average of the values at the advanced and the previous time levels. 

n Wik+X 

Pitvik 
” i-X,k x f XuiiY,k 

n W,, k-Y 

FIG. 3. The staggered mesh. 

The inertial terms are calculated using the “absolutely conserving” scheme of 
Piacsek and Williams [9]. This scheme conserves the total kinetic energy, apart from 
errors in the divergence. As we see below, the Poisson equation for pressure is solved 
by a direct method, and apart from machine truncation, the only errors in the 
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divergence are due to the fact that the du Fort-Frankel terms must be approximated 
in deriving the pressure. However, these errors are small provided the temporal 
evolution is on a time scale much longer than the time step, and they vanish in the 
steady state. 

Periodic boundary conditions were specified in the x-direction, while at the lower 
boundary, z = 0, we specify u = v = w  = 0 and at the top of the model, z = H, 
there is a stress-free, rigid lid, i.e., aulaz = av/az = w  = 0. 

The boundary conditions on the elliptic equation for pressure are particularly 
simple in the Cartesian model, in contrast to the nonorthogonal coordinate model. 
The pressure equation is obtained by taking the finite-difference equivalent of the 
divergence of the momentum equations. 

If we write the momentum equations (2.4) and (2.6) as 

au/at = -vp + T, (2.9) 

where u = (u, NJ), V = (a/ax, a/&) and T = (T, , TZ) represent all terms other than 
the pressure gradient, then 

Vzp = V . T. (2.10) 

Equation (2.9) represents the equation for pressure in the finite-difference model, 
provided V denotes a finite-difference operator, and then the right-hand side is required 
at all interior grid points. 

The derivation of the Poisson equation (2.10) beneath S requires further discussion. 
In the limit vs --+ co, u = 0 below S, and if we let the density p -+ co below S, the 
pressure forces are negligible. Thus the only diagnostic pressure equation which is 
consistent with the finite-difference analog of the continuity equation is obtained by 
setting T = 0 at all points beneath S, as can be seen from Eq. (2.9). This ensures that 
the continuity equation is satisfied on our mesh but incurs the flux errors near the 
surface described in the previous section. 

It will be seen that values of T, outside the domain are required to define the right- 
hand side of (2.10) at all interior points. Since w  = 0 on both the upper and lower 
boundaries, the boundary condition on the pressure is 

‘P T -= 2: az on z = 0, H, 

and it can be shown that if this boundary condition is applied, then the solution for p 
at all interior points is independent of the value assigned to T, outside the domain. 
The horizontal boundaries lie on the levels containing the w-points (see Fig. 3), so 
the pressure is only required at interior points to advance the fields. Hence we set 
T, = 0 below z = 0 and above z = Hand solve the Poisson equation with boundary 
conditions ap/az = 0 on z = 0, H. The equation is solved using a fast Fourier trans- 
form for the x-direction, and line inversion of the resulting tridiagonal matrix for the 
z-direction. 
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We have found that the du Fort-Frankel scheme does not give unconditional 
stability of the viscous terms when Coriolis terms are also present. We have not 
presented our linear stability analysis because empirical results from our model 
indicated the importance of spatial variations in viscosity. (A similar stability analysis 
by Lipps [lo] was brought to our attention by a referee.) The empirical results show 
a rapidly oscillating instability when vrnax dt/dz2 > constant of order 1. Here dt is 
the time step, dz is the smallest grid length, and vmax is the maximum viscosity used 
by the model. This will be one of the interpolated viscosities, since viscosities beneath S 
are not used in the numerical scheme. This stability criterion limits the maximum 
viscosity which can be calculated from Eq. (2.3). However, the criterion is not very 
restrictive, since in most cases, limiting the interpolated viscosities to satisfy 
~r~+lf,/dz~ < 0.5 at each point effectively only changes the position of S by a small 
fraction of a grid length. 

For flows in which v,,A t/Az2 is not much less than 0.5 (none of which are presented 
below), we have found that the use of larger interpolated viscosities, without instability, 
is made possible by the application of a time smoother to the U, u, w, and p fields. 
The values of a field rj at time levels IZ and n - 1, which are used in the leapfrog 
scheme to produce values at time n + 1, are replaced by smoothed values +s” and 
9:-l, defined by 

&” = (1 - c) 4” + E&--l, 

where E is about 0.05. The use of this time smoothing clearly does not affect steady- 
state solutions, and comparison with unsmoothed results in cases where they were 
stable showed insignificant differences, apart from a reduction in time scale by a 
factor of (1 - e). 

Finally, the slow “time-splitting” instability of the leapfrog scheme is removed by 
the use of an occasional forward time step. This is only first-order accurate in time, 
but it does not significantly reduce the overall accuracy, since it is used roughly only 
once every 25 steps. 

3. EXAMPLES OF MODEL RESULTS 

Some results of integrations over a range of scales of topography are presented in 
this section. Parameters were chosen so that the flows bear some resemblance to 
atmospheric flows. The fluid viscosity, v,, is 5 m2 set-1, and the Coriolis parameter, 
f, is 1O-4 set-l, which gives an Ekman boundary layer depth S = (2~/f)‘/~ of 
approximately 300 m. dPJdy is chosen to give a geostrophic wind U, = -(l/‘)(dP,/dy) 
of 10 m set-l. The first two examples are of homogeneous flow, i.e. contain no 
buoyancy effects. 

In order to provide some verification of the method of representation of topography 
we first present a comparison with a linearized analytic theory. The theory is based 
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on a “triple-deck” analysis of the type discussed by Smith [l l] and is described in 
detail by Sykes [12]. This is an asymptotic theory based on the small parameter 
(v~/U~S)~/~, which for the present case has a value of 0.22. The theory has been 
linearized by assuming that the height of the hill is small, and the small parameter 
involved in this is 0.2. Figure 4 shows the dimensionless surface pressure from the 
theory compared with the model results, and it is clear that the errors are well within 
the limits of accuracy expected of the theory, i.e., -20 %. 

? 

P' 

0.1 

FIG. 4. A comparison of dimensionless surface pressure p* between the numerical model and 
analytic theory. The hill has the form .z = co9 (TX), I x I < 0.5, and z = 0 otherwise. The smooth 
curve is from the theory, and the values of p* at grid points are indicated by open circles. 

The next example is that of strongly separated flow past an obstacle 50 m high with 
slopes of order 45”. For this case h (see Section 2a) is ~325 m, giving A/h M 4. Figure 
5a shows contours of the stream function, with contour values chosen to give a fairly 
uniform spacing on the stretched grid. The solution presented is close to equilibrium 
and is characterized by a long separation bubble. The pressure field is shown in Fig. 5b, 
and it can be seen that the pressure varies smoothly across the surface of the obstacle. 
Along the surface there is a strong favorable pressure gradient associated with the 
acceleration of fluid over the obstacle, but owing to the separation behind the obstacle, 
the corresponding adverse pressure gradient is greatly reduced. 

Although it is not particularly evident in Fig. 5, we should emphasize that the 
contour plotting program is based simply on linear interpolation between grid-point 
values. Since the plotting program has no information about the interpolated viscos- 
ities, this procedure can produce spurious contours near the surface. These effects are 
more obvious in Fig. 6. 
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FIG. 5. Numerical results obtained with a mesh of 64 by 24 points. The results are presented 
with a uniform spacing between grid points. The actual grid point heights in meters are indicated 
on the right-hand side of the diagram. (a) shows streamlines, chosen to give an almost uniform spacing 
in the absence of topography. (b) shows the corresponding pressure field. The contour interval is 
0.125 Nm-2,andnegative values are denoted by dashed lines. The zero contour is shown as a slightly 
heavier solid line. These plotting conventions apply to Fig. 6. 

The final example includes effects owing to a stable stratification which are, of 
course, important in many geophysical flows. In the simulation of such flows it is 
normal to use a form of radiation boundary condition at the upper boundary to allow 
gravity wave energy to leave the domain of integration. The use of such boundary 
conditions is independent of the method of representing topography, and in this 
example a radiation condition at z = H was simulated by the use of Rayleigh 
damping on the uppermost five grid points (for details and other examples 
see [13]). 
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FIG. 6. Numerical results obtained with a mesh of 64 by 36 points. (a) shows the x-component 
of velocity u plotted with a contour interval of 1.0 m se-l. (b) shows the vertical component of 
velocity w plotted with a contour interval of 5.5 x lo-* m set-I. (c) shows buoyancy (-gp/p) per- 
turbations from the initial state plotted with a contour interval of 6.0 x 1O-3 m set-2. (d) shows the 
pressure field plotted with a contour interval of 8.3 Nm-2. 
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d 

FIG. G--Continued 

The basic stratification is chosen such that the Brunt-Vaisala frequency N = 
[(g/F)(dp/iz>]1/2 = 1O-2 set-l and to minimize the generation of “slope winds”, owing 
to temperature contrast between the hill and the adjacent fluid, the densities beneath 
the surface are taken to correspond to)the basic stratification. 

Figure 6 shows steady flow over a long-length-scale hill which is higher than the 
boundary layer. The hill is 1 km high and 60 km long in a periodic domain of length 
240 km and depth 15 km. In this case the scale h ~200 m, giving A/h = &. Figures 6a, b 
show the U- and w-components of velocity, respectively. On this length scale, the 
principal effects in u and w  are caused by the strong stratification. This inhibits 
vertical motions, forcing the fluid to rise gently upstream and flow over the summit 
in a vertically constricted jet. On the leeward slope, the buoyancy forces rapidly 
accelerate the fluid as it returns to its equilibrium level. Note that the buoyancy forces 
have made the flow separation nearly symmetric about the center of the hill. 

Figure 6c shows the buoyancy perturbation from the undisturbed state; as with 
the u and w  fields, vertically propagating gravity waves are evident. Finally, Fig. 6d 
shows the pressure field; it can be seen that since the slope of the topography is small, 
ap/az is almost zero at the surface. 

4. CONCLUSIONS 

When the viscous boundary layer resolution requirements discussed in Section 2a 
are met, it is possible to include topography into a Cartesian model without loss of 
accuracy. The method can be considered in two parts: 

1. Small terms are neglected near the surface. 

2. The diagnostic Poisson equation for pressure is solved in the entire rectangular 
domain by posing a trivial physical model for the state of zero motion beneath the 
surface. The motivation for using this method, in problems where the resolution 
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requirements can be accommodated, lies in the ease of adaptation of an existing 
Cartesian code and in the fast execution speed in comparison with more formally 
accurate methods. The examples given here and in [13] demonstrate the utility of the 
method. 
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